Nuprl Lemma : cubical-path-ap-id-adjoin
∀[pth,x,Z:Top].  (((pth)p @ q)[x] ~ pth @ x)
Proof
Definitions occuring in Statement : 
cubical-path-app: pth @ r, 
csm-id-adjoin: [u], 
cc-snd: q, 
cc-fst: p, 
csm-ap-term: (t)s, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
cubical-path-app: pth @ r, 
cc-fst: p, 
csm-ap-term: (t)s, 
csm-id-adjoin: [u], 
csm-id: 1(X), 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
cubicalpath-app: pth @ r, 
cc-snd: q, 
cubical-app: app(w; u), 
pi1: fst(t), 
pi2: snd(t), 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[pth,x,Z:Top].    (((pth)p  @  q)[x]  \msim{}  pth  @  x)
Date html generated:
2018_05_23-AM-09_35_26
Last ObjectModification:
2018_05_20-PM-06_37_17
Theory : cubical!type!theory
Home
Index