Nuprl Lemma : cubical-path-ap-id-adjoin

[pth,x,Z:Top].  (((pth)p q)[x] pth x)


Proof




Definitions occuring in Statement :  cubical-path-app: pth r csm-id-adjoin: [u] cc-snd: q cc-fst: p csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-path-app: pth r cc-fst: p csm-ap-term: (t)s csm-id-adjoin: [u] csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x cubicalpath-app: pth r cc-snd: q cubical-app: app(w; u) pi1: fst(t) pi2: snd(t) member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule because_Cache cut introduction extract_by_obid hypothesis

Latex:
\mforall{}[pth,x,Z:Top].    (((pth)p  @  q)[x]  \msim{}  pth  @  x)



Date html generated: 2018_05_23-AM-09_35_26
Last ObjectModification: 2018_05_20-PM-06_37_17

Theory : cubical!type!theory


Home Index