Nuprl Lemma : cubical-pi-implies-sigma

G:j⊢. ∀A:{G ⊢ _}. ∀B:{G.A ⊢ _}.  ({G ⊢ _:A}  {G ⊢ _:ΠB}  {G ⊢ _:Σ B})


Proof




Definitions occuring in Statement :  cubical-sigma: Σ B cubical-pi: ΠB cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cubical-pi: ΠB presheaf-pi: ΠB cubical-pi-family: cubical-pi-family(X;A;B;I;a) presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a) cube-cat: CubeCat cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u) cubical-sigma: Σ B presheaf-sigma: Σ B
Lemmas referenced :  presheaf-pi-implies-sigma cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.  \mforall{}B:\{G.A  \mvdash{}  \_\}.    (\{G  \mvdash{}  \_:A\}  {}\mRightarrow{}  \{G  \mvdash{}  \_:\mPi{}A  B\}  {}\mRightarrow{}  \{G  \mvdash{}  \_:\mSigma{}  A  B\})



Date html generated: 2020_05_20-PM-02_34_50
Last ObjectModification: 2020_04_03-PM-08_45_14

Theory : cubical!type!theory


Home Index