Nuprl Lemma : cubical-pi-p
∀X:j⊢. ∀T,A:{X ⊢ _}. ∀B:{X.A ⊢ _}.  ((ΠA B)p = X.T ⊢ Π(A)p (B)(p o p;q) ∈ {X.T ⊢ _})
Proof
Definitions occuring in Statement : 
cubical-pi: ΠA B
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
cube-context-adjoin: X.A
, 
psc-adjoin: X.A
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
cubical-pi: ΠA B
, 
presheaf-pi: ΠA B
, 
cubical-pi-family: cubical-pi-family(X;A;B;I;a)
, 
presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a)
, 
cube-cat: CubeCat
, 
cc-adjoin-cube: (v;u)
, 
psc-adjoin-set: (v;u)
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cc-fst: p
, 
psc-fst: p
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
, 
csm-comp: G o F
, 
pscm-comp: G o F
, 
cc-snd: q
, 
psc-snd: q
Lemmas referenced : 
presheaf-pi-p, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
Error :memTop
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}T,A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.    ((\mPi{}A  B)p  =  X.T  \mvdash{}  \mPi{}(A)p  (B)(p  o  p;q))
Date html generated:
2020_05_20-PM-02_00_24
Last ObjectModification:
2020_04_03-PM-08_33_28
Theory : cubical!type!theory
Home
Index