Nuprl Lemma : cubical-pi-p
∀X:j⊢. ∀T,A:{X ⊢ _}. ∀B:{X.A ⊢ _}.  ((ΠA B)p = X.T ⊢ Π(A)p (B)(p o p;q) ∈ {X.T ⊢ _})
Proof
Definitions occuring in Statement : 
cubical-pi: ΠA B, 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
csm-comp: G o F, 
cubical_set: CubicalSet, 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
cube-context-adjoin: X.A, 
psc-adjoin: X.A, 
I_cube: A(I), 
I_set: A(I), 
cubical-type-at: A(a), 
presheaf-type-at: A(a), 
cube-set-restriction: f(s), 
psc-restriction: f(s), 
cubical-type-ap-morph: (u a f), 
presheaf-type-ap-morph: (u a f), 
csm-ap-type: (AF)s, 
pscm-ap-type: (AF)s, 
cubical-pi: ΠA B, 
presheaf-pi: ΠA B, 
cubical-pi-family: cubical-pi-family(X;A;B;I;a), 
presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a), 
cube-cat: CubeCat, 
cc-adjoin-cube: (v;u), 
psc-adjoin-set: (v;u), 
csm-ap: (s)x, 
pscm-ap: (s)x, 
cc-fst: p, 
psc-fst: p, 
csm-adjoin: (s;u), 
pscm-adjoin: (s;u), 
csm-comp: G o F, 
pscm-comp: G o F, 
cc-snd: q, 
psc-snd: q
Lemmas referenced : 
presheaf-pi-p, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
Error :memTop
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}T,A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.    ((\mPi{}A  B)p  =  X.T  \mvdash{}  \mPi{}(A)p  (B)(p  o  p;q))
Date html generated:
2020_05_20-PM-02_00_24
Last ObjectModification:
2020_04_03-PM-08_33_28
Theory : cubical!type!theory
Home
Index