Nuprl Lemma : cubical-refl-app-snd
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  ((refl(a))p @ q = (a)p ∈ {X.𝕀 ⊢ _:(A)p})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a), 
cubical-path-app: pth @ r, 
interval-type: 𝕀, 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
cubical-refl: refl(a), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B
Lemmas referenced : 
term-to-path-app-snd, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-term_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
thin, 
instantiate, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    ((refl(a))p  @  q  =  (a)p)
Date html generated:
2020_05_20-PM-03_22_10
Last ObjectModification:
2020_04_06-PM-06_39_40
Theory : cubical!type!theory
Home
Index