Nuprl Lemma : cubical-sigma-subset-adjoin
∀[X,A,B,T,phi:Top].  (Σ A B ~ Σ A B)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
cubical-sigma: Σ A B
, 
cube-context-adjoin: X.A
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf, 
cubical-sigma-normalize
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[X,A,B,T,phi:Top].    (\mSigma{}  A  B  \msim{}  \mSigma{}  A  B)
Date html generated:
2018_05_23-AM-09_29_28
Last ObjectModification:
2018_05_20-PM-06_27_55
Theory : cubical!type!theory
Home
Index