Nuprl Lemma : cubical-subst_wf

[G:j⊢]. ∀[A:{G ⊢_}]. ∀[a,b:{G ⊢ _:A}]. ∀[p:{G ⊢ _:(Path_A b)}]. ∀[f:{G ⊢ _:(A ⟶ c𝕌)}].
[x:{G ⊢ _:decode(app(f; a))}].
  (cubical-subst(G;f;p;x) ∈ {G ⊢ _:decode(app(f; b))})


Proof




Definitions occuring in Statement :  cubical-subst: cubical-subst(G;f;pth;x) universe-decode: decode(t) cubical-universe: c𝕌 path-type: (Path_A b) cubical-app: app(w; u) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-subst: cubical-subst(G;f;pth;x)
Lemmas referenced :  cubical-app_wf_fun cubical-universe_wf map-path_wf universe-decode_wf path-trans_wf istype-cubical-term cubical-fun_wf path-type_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality hypothesis sqequalRule universeIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}'  \_\}].  \mforall{}[a,b:\{G  \mvdash{}  \_:A\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_A  a  b)\}].  \mforall{}[f:\{G  \mvdash{}  \_:(A  {}\mrightarrow{}  c\mBbbU{})\}].
\mforall{}[x:\{G  \mvdash{}  \_:decode(app(f;  a))\}].
    (cubical-subst(G;f;p;x)  \mmember{}  \{G  \mvdash{}  \_:decode(app(f;  b))\})



Date html generated: 2020_05_20-PM-07_33_18
Last ObjectModification: 2020_04_30-AM-00_10_54

Theory : cubical!type!theory


Home Index