Nuprl Lemma : cubical-subst_wf
∀[G:j⊢]. ∀[A:{G ⊢' _}]. ∀[a,b:{G ⊢ _:A}]. ∀[p:{G ⊢ _:(Path_A a b)}]. ∀[f:{G ⊢ _:(A ⟶ c𝕌)}].
∀[x:{G ⊢ _:decode(app(f; a))}].
  (cubical-subst(G;f;p;x) ∈ {G ⊢ _:decode(app(f; b))})
Proof
Definitions occuring in Statement : 
cubical-subst: cubical-subst(G;f;pth;x)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
path-type: (Path_A a b)
, 
cubical-app: app(w; u)
, 
cubical-fun: (A ⟶ B)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-subst: cubical-subst(G;f;pth;x)
Lemmas referenced : 
cubical-app_wf_fun, 
cubical-universe_wf, 
map-path_wf, 
universe-decode_wf, 
path-trans_wf, 
istype-cubical-term, 
cubical-fun_wf, 
path-type_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
universeIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}'  \_\}].  \mforall{}[a,b:\{G  \mvdash{}  \_:A\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_A  a  b)\}].  \mforall{}[f:\{G  \mvdash{}  \_:(A  {}\mrightarrow{}  c\mBbbU{})\}].
\mforall{}[x:\{G  \mvdash{}  \_:decode(app(f;  a))\}].
    (cubical-subst(G;f;p;x)  \mmember{}  \{G  \mvdash{}  \_:decode(app(f;  b))\})
Date html generated:
2020_05_20-PM-07_33_18
Last ObjectModification:
2020_04_30-AM-00_10_54
Theory : cubical!type!theory
Home
Index