Nuprl Lemma : cubical-term-at-comp

Gamma:j⊢. ∀T:{Gamma ⊢ _}. ∀t:{Gamma ⊢ _:T}. ∀I:fset(ℕ). ∀rho:Gamma(I). ∀J:fset(ℕ). ∀f:J ⟶ I. ∀K:fset(ℕ). ∀g:K ⟶ J.
  (t(f ⋅ g(rho)) t(g(f(rho))) ∈ T(g(f(rho))))


Proof




Definitions occuring in Statement :  cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube-cat: CubeCat I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-term-at: u(a) presheaf-term-at: u(a)
Lemmas referenced :  presheaf-term-at-comp cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}T:\{Gamma  \mvdash{}  \_\}.  \mforall{}t:\{Gamma  \mvdash{}  \_:T\}.  \mforall{}I:fset(\mBbbN{}).  \mforall{}rho:Gamma(I).  \mforall{}J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.
\mforall{}K:fset(\mBbbN{}).  \mforall{}g:K  {}\mrightarrow{}  J.
    (t(f  \mcdot{}  g(rho))  =  t(g(f(rho))))



Date html generated: 2020_05_20-PM-02_33_07
Last ObjectModification: 2020_04_03-PM-08_43_28

Theory : cubical!type!theory


Home Index