Nuprl Lemma : cubical-type-iso-inverse

[X:j⊢]. ((cubical-type-rev-iso(X) cubical-type-iso(X)) x.x) ∈ (cubical_type{i:l}(X) ⟶ cubical_type{i:l}(X)))


Proof




Definitions occuring in Statement :  cubical-type-rev-iso: cubical-type-rev-iso(X) cubical-type-iso: cubical-type-iso(X) cubical_type: cubical_type{i:l}(X) cubical_set: CubicalSet compose: g uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cubical_type: cubical_type{i:l}(X) presheaf_type: presheaf_type{i:l}(C; X) cubes: cubes(X) cubical-type-rev-iso: cubical-type-rev-iso(X) presheaf-type-rev-iso: presheaf-type-rev-iso(X) cubical-type-iso: cubical-type-iso(X) presheaf-type-iso: presheaf-type-iso(X) cube-set-restriction: f(s) psc-restriction: f(s)
Lemmas referenced :  presheaf-type-iso-inverse cube-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[X:j\mvdash{}].  ((cubical-type-rev-iso(X)  o  cubical-type-iso(X))  =  (\mlambda{}x.x))



Date html generated: 2020_05_20-PM-01_46_52
Last ObjectModification: 2020_04_03-PM-07_58_21

Theory : cubical!type!theory


Home Index