Nuprl Lemma : cubical-universe-ap-morph

[I,b,J,f,a:Top].  ((b f) csm-fibrant-type(formal-cube(I);formal-cube(J);<f>;b))


Proof




Definitions occuring in Statement :  cubical-universe: c𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT) cubical-type-ap-morph: (u f) context-map: <rho> formal-cube: formal-cube(I) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type-ap-morph: (u f) pi2: snd(t) cubical-universe: c𝕌 closed-type-to-type: closed-type-to-type(T) closed-cubical-universe: cc𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
Lemmas referenced :  istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule hypothesis axiomSqEquality inhabitedIsType hypothesisEquality sqequalHypSubstitution isect_memberEquality_alt isectElimination thin isectIsTypeImplies extract_by_obid

Latex:
\mforall{}[I,b,J,f,a:Top].    ((b  a  f)  \msim{}  csm-fibrant-type(formal-cube(I);formal-cube(J);<f>b))



Date html generated: 2020_05_20-PM-07_06_46
Last ObjectModification: 2020_04_25-AM-11_35_05

Theory : cubical!type!theory


Home Index