Nuprl Lemma : cubical-universe-ap-morph
∀[I,b,J,f,a:Top].  ((b a f) ~ csm-fibrant-type(formal-cube(I);formal-cube(J);<f>b))
Proof
Definitions occuring in Statement : 
cubical-universe: c𝕌
, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
cubical-type-ap-morph: (u a f)
, 
context-map: <rho>
, 
formal-cube: formal-cube(I)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-type-ap-morph: (u a f)
, 
pi2: snd(t)
, 
cubical-universe: c𝕌
, 
closed-type-to-type: closed-type-to-type(T)
, 
closed-cubical-universe: cc𝕌
, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
isectIsTypeImplies, 
extract_by_obid
Latex:
\mforall{}[I,b,J,f,a:Top].    ((b  a  f)  \msim{}  csm-fibrant-type(formal-cube(I);formal-cube(J);<f>b))
Date html generated:
2020_05_20-PM-07_06_46
Last ObjectModification:
2020_04_25-AM-11_35_05
Theory : cubical!type!theory
Home
Index