Nuprl Lemma : cubical_set-ext

{FM:F:fset(ℕ) ⟶ 𝕌{j'} × (I:fset(ℕ) ⟶ J:fset(ℕ) ⟶ J ⟶ I ⟶ (F I) ⟶ (F J))| 
 let F,M FM 
 in (∀I:fset(ℕ). ∀s:FM(I).  (1(s) s ∈ FM(I)))
    ∧ (∀I,J,K:fset(ℕ). ∀f:J ⟶ I. ∀g:K ⟶ J. ∀s:FM(I).  (f ⋅ g(s) g(f(s)) ∈ FM(K)))}  ≡ CubicalSet{j}


Proof




Definitions occuring in Statement :  cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J fset: fset(T) nat: ext-eq: A ≡ B all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cube-set-restriction: f(s) psc-restriction: f(s) cubical_set: CubicalSet
Lemmas referenced :  ps_context-ext cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_id_tuple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\{FM:F:fset(\mBbbN{})  {}\mrightarrow{}  \mBbbU{}\{j'\}  \mtimes{}  (I:fset(\mBbbN{})  {}\mrightarrow{}  J:fset(\mBbbN{})  {}\mrightarrow{}  J  {}\mrightarrow{}  I  {}\mrightarrow{}  (F  I)  {}\mrightarrow{}  (F  J))| 
  let  F,M  =  FM 
  in  (\mforall{}I:fset(\mBbbN{}).  \mforall{}s:FM(I).    (1(s)  =  s))
        \mwedge{}  (\mforall{}I,J,K:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}g:K  {}\mrightarrow{}  J.  \mforall{}s:FM(I).    (f  \mcdot{}  g(s)  =  g(f(s))))\}    \mequiv{}  CubicalSet\{j\}



Date html generated: 2020_05_20-PM-01_39_14
Last ObjectModification: 2020_04_03-PM-03_44_17

Theory : cubical!type!theory


Home Index