Nuprl Lemma : decode-equivTerm
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  (decode(equivTerm(G;A;B)) = Equiv(decode(A);decode(B)) ∈ {G ⊢ _})
Proof
Definitions occuring in Statement : 
equivTerm: equivTerm(G;A;B)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
cubical-equiv: Equiv(T;A)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equivTerm: equivTerm(G;A;B)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
universe-decode-encode, 
cubical-equiv_wf, 
universe-decode_wf, 
equiv-comp_wf, 
universe-comp-op_wf, 
istype-cubical-universe-term, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
universeIsType, 
instantiate
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    (decode(equivTerm(G;A;B))  =  Equiv(decode(A);decode(B)))
Date html generated:
2020_05_20-PM-07_34_06
Last ObjectModification:
2020_04_30-AM-00_11_49
Theory : cubical!type!theory
Home
Index