Nuprl Lemma : decode-equivTerm

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  (decode(equivTerm(G;A;B)) Equiv(decode(A);decode(B)) ∈ {G ⊢ _})


Proof




Definitions occuring in Statement :  equivTerm: equivTerm(G;A;B) universe-decode: decode(t) cubical-universe: c𝕌 cubical-equiv: Equiv(T;A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] equivTerm: equivTerm(G;A;B) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  universe-decode-encode cubical-equiv_wf universe-decode_wf equiv-comp_wf universe-comp-op_wf istype-cubical-universe-term cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis dependent_functionElimination universeIsType instantiate

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    (decode(equivTerm(G;A;B))  =  Equiv(decode(A);decode(B)))



Date html generated: 2020_05_20-PM-07_34_06
Last ObjectModification: 2020_04_30-AM-00_11_49

Theory : cubical!type!theory


Home Index