Nuprl Lemma : discrete-cubical-term-is-constant
Not every term of a discrete cubical type is constant, but when the
context is the formal-cube(I) -- Yoneda(I) -- then it is.⋅
∀[T:Type]. ∀[I:fset(ℕ)]. ∀[t:{formal-cube(I) ⊢ _:discr(T)}].  (t = discr(t(1)) ∈ {formal-cube(I) ⊢ _:discr(T)})
Proof
Definitions occuring in Statement : 
discrete-cubical-term: discr(t), 
discrete-cubical-type: discr(T), 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
formal-cube: formal-cube(I), 
nh-id: 1, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cube-cat: CubeCat, 
all: ∀x:A. B[x], 
top: Top, 
discrete-cubical-type: discr(T), 
discrete-presheaf-type: discr(T), 
formal-cube: formal-cube(I), 
Yoneda: Yoneda(I), 
discrete-cubical-term: discr(t), 
discrete-presheaf-term: discr(t), 
cubical-term-at: u(a), 
presheaf-term-at: u(a)
Lemmas referenced : 
discrete-presheaf-term-is-constant, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
cubical-term-sq-presheaf-term, 
cat_id_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[t:\{formal-cube(I)  \mvdash{}  \_:discr(T)\}].    (t  =  discr(t(1)))
Date html generated:
2018_05_23-AM-09_14_26
Last ObjectModification:
2018_05_20-PM-06_13_24
Theory : cubical!type!theory
Home
Index