Nuprl Lemma : discrete-map-is-constant
∀[T:𝕌{j}]. ∀[I:fset(ℕ)]. ∀[s:formal-cube(I) ij⟶ discrete-cube(T)].
  (s = (λJ,g. (s I 1)) ∈ formal-cube(I) ij⟶ discrete-cube(T))
Proof
Definitions occuring in Statement : 
cube_set_map: A ⟶ B, 
discrete-cube: discrete-cube(A), 
formal-cube: formal-cube(I), 
nh-id: 1, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
apply: f a, 
lambda: λx.A[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cube-cat: CubeCat, 
all: ∀x:A. B[x], 
cube_set_map: A ⟶ B, 
formal-cube: formal-cube(I), 
Yoneda: Yoneda(I), 
discrete-cube: discrete-cube(A), 
discrete-set: discrete-set(A)
Lemmas referenced : 
ps-discrete-map-is-constant, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
cat_id_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[T:\mBbbU{}\{j\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[s:formal-cube(I)  ij{}\mrightarrow{}  discrete-cube(T)].    (s  =  (\mlambda{}J,g.  (s  I  1)))
Date html generated:
2020_05_20-PM-02_31_55
Last ObjectModification:
2020_04_04-AM-09_47_57
Theory : cubical!type!theory
Home
Index