Nuprl Lemma : discrete-unary_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[X:j⊢]. ∀[t:{X ⊢ _:discr(A)}].  (discrete-unary(t;x.f[x]) ∈ {X ⊢ _:discr(B)})


Proof




Definitions occuring in Statement :  discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet discrete-unary: discrete-unary(t;x.f[x]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet discrete-cubical-type: discr(T) discrete-presheaf-type: discr(T)
Lemmas referenced :  discrete-unary_wf cube-cat_wf cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:discr(A)\}].
    (discrete-unary(t;x.f[x])  \mmember{}  \{X  \mvdash{}  \_:discr(B)\})



Date html generated: 2020_05_20-PM-02_31_38
Last ObjectModification: 2020_04_03-PM-08_42_01

Theory : cubical!type!theory


Home Index