Nuprl Lemma : discrete-unary_wf
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[X:j⊢]. ∀[t:{X ⊢ _:discr(A)}].  (discrete-unary(t;x.f[x]) ∈ {X ⊢ _:discr(B)})
Proof
Definitions occuring in Statement : 
discrete-cubical-type: discr(T)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
discrete-unary: discrete-unary(t;x.f[x])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
discrete-cubical-type: discr(T)
, 
discrete-presheaf-type: discr(T)
Lemmas referenced : 
discrete-unary_wf, 
cube-cat_wf, 
cubical-term-sq-presheaf-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:discr(A)\}].
    (discrete-unary(t;x.f[x])  \mmember{}  \{X  \mvdash{}  \_:discr(B)\})
Date html generated:
2020_05_20-PM-02_31_38
Last ObjectModification:
2020_04_03-PM-08_42_01
Theory : cubical!type!theory
Home
Index