Nuprl Lemma : dm-neg-sq
∀[I,J,v:Top].  (dm-neg(names(I);NamesDeq;v) ~ dm-neg(names(J);NamesDeq;v))
Proof
Definitions occuring in Statement : 
names-deq: NamesDeq
, 
names: names(I)
, 
dm-neg: ¬(x)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dm-neg: ¬(x)
, 
union-deq: union-deq(A;B;a;b)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-meet: /\(s)
, 
lattice-fset-join: \/(s)
, 
lattice-1: 1
, 
lattice-meet: a ∧ b
, 
lattice-0: 0
, 
lattice-join: a ∨ b
, 
record-select: r.x
, 
opposite-lattice: opposite-lattice(L)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
so_lambda: λ2x y.t[x; y]
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
Lemmas referenced : 
rec_select_update_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
voidElimination, 
voidEquality
Latex:
\mforall{}[I,J,v:Top].    (dm-neg(names(I);NamesDeq;v)  \msim{}  dm-neg(names(J);NamesDeq;v))
Date html generated:
2016_05_18-PM-00_12_00
Last ObjectModification:
2016_03_26-PM-08_50_11
Theory : cubical!type!theory
Home
Index