Nuprl Lemma : dm-neg-sq

[I,J,v:Top].  (dm-neg(names(I);NamesDeq;v) dm-neg(names(J);NamesDeq;v))


Proof




Definitions occuring in Statement :  names-deq: NamesDeq names: names(I) dm-neg: ¬(x) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dm-neg: ¬(x) union-deq: union-deq(A;B;a;b) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-meet: /\(s) lattice-fset-join: \/(s) lattice-1: 1 lattice-meet: a ∧ b lattice-0: 0 lattice-join: a ∨ b record-select: r.x opposite-lattice: opposite-lattice(L) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt so_lambda: λ2y.t[x; y] free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) all: x:A. B[x] top: Top fset-singleton: {x} cons: [a b] empty-fset: {} nil: [] it:
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom lemma_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache dependent_functionElimination voidElimination voidEquality

Latex:
\mforall{}[I,J,v:Top].    (dm-neg(names(I);NamesDeq;v)  \msim{}  dm-neg(names(J);NamesDeq;v))



Date html generated: 2016_05_18-PM-00_12_00
Last ObjectModification: 2016_03_26-PM-08_50_11

Theory : cubical!type!theory


Home Index