Nuprl Lemma : dma-neg-dM1

[I:Top]. (1) 0)


Proof




Definitions occuring in Statement :  dM1: 1 dM0: 0 dM: dM(I) dma-neg: ¬(x) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] dma-neg: ¬(x) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM1: 1 lattice-1: 1 bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) fset-singleton: {x} cons: [a b] nil: [] it: fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y] lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s) empty-fset: {} lattice-0: 0 dM0: 0 member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid hypothesis

Latex:
\mforall{}[I:Top].  (\mneg{}(1)  \msim{}  0)



Date html generated: 2018_05_23-AM-08_27_31
Last ObjectModification: 2018_05_20-PM-05_35_24

Theory : cubical!type!theory


Home Index