Nuprl Definition : equiv-term

equiv [phi ⊢→ (t,  c)] ==
  let equiv-contr(f;a) in
   let (contr-path(e;fiber-point(t;c)))p in
   comp (cF)p [phi ⊢→ u] contr-center(e)



Definitions occuring in Statement :  comp_term: comp cA [phi ⊢→ u] a0 csm-comp-structure: (cA)tau equiv-contr: equiv-contr(f;a) fiber-point: fiber-point(t;c) contr-path: contr-path(c;x) contr-center: contr-center(c) cubical-path-app: pth r interval-type: 𝕀 cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s let: let
Definitions occuring in definition :  equiv-contr: equiv-contr(f;a) let: let cubical-path-app: pth r csm-ap-term: (t)s contr-path: contr-path(c;x) fiber-point: fiber-point(t;c) cc-snd: q comp_term: comp cA [phi ⊢→ u] a0 csm-comp-structure: (cA)tau cube-context-adjoin: X.A interval-type: 𝕀 cc-fst: p contr-center: contr-center(c)
FDL editor aliases :  equiv-term

Latex:
equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a  ==
    let  e  =  equiv-contr(f;a)  in
      let  u  =  (contr-path(e;fiber-point(t;c)))p  @  q  in
      comp  (cF)p  [phi  \mvdash{}\mrightarrow{}  u]  contr-center(e)



Date html generated: 2016_06_16-PM-02_32_43
Last ObjectModification: 2016_06_06-PM-04_53_06

Theory : cubical!type!theory


Home Index