Nuprl Definition : equiv-term
equiv f [phi ⊢→ (t,  c)] a ==
  let e = equiv-contr(f;a) in
   let u = (contr-path(e;fiber-point(t;c)))p @ q in
   comp (cF)p [phi ⊢→ u] contr-center(e)
Definitions occuring in Statement : 
comp_term: comp cA [phi ⊢→ u] a0
, 
csm-comp-structure: (cA)tau
, 
equiv-contr: equiv-contr(f;a)
, 
fiber-point: fiber-point(t;c)
, 
contr-path: contr-path(c;x)
, 
contr-center: contr-center(c)
, 
cubical-path-app: pth @ r
, 
interval-type: 𝕀
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
let: let
Definitions occuring in definition : 
equiv-contr: equiv-contr(f;a)
, 
let: let, 
cubical-path-app: pth @ r
, 
csm-ap-term: (t)s
, 
contr-path: contr-path(c;x)
, 
fiber-point: fiber-point(t;c)
, 
cc-snd: q
, 
comp_term: comp cA [phi ⊢→ u] a0
, 
csm-comp-structure: (cA)tau
, 
cube-context-adjoin: X.A
, 
interval-type: 𝕀
, 
cc-fst: p
, 
contr-center: contr-center(c)
FDL editor aliases : 
equiv-term
Latex:
equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a  ==
    let  e  =  equiv-contr(f;a)  in
      let  u  =  (contr-path(e;fiber-point(t;c)))p  @  q  in
      comp  (cF)p  [phi  \mvdash{}\mrightarrow{}  u]  contr-center(e)
Date html generated:
2016_06_16-PM-02_32_43
Last ObjectModification:
2016_06_06-PM-04_53_06
Theory : cubical!type!theory
Home
Index