Nuprl Definition : extend-face-term

This construction extends partial term u ∈ {I,phi ⊢ _:𝔽to a
total formula in 𝔽(I). 

For each face, fc (irr_face(I;as;bs)),
in the components of phi, there is "free-est" morphism, 
 g=(irr-face-morph(I;as;bs)), that makes (fc)g 1.
This makes (fc ∧ u(g)) well-defined formula in 𝔽(I).
The join of all of these formulas is the extension.

It satisfies these additional properties:
Error :extend-face-term-property
Error :extend-face-term-le
Error :extend-face-term-unique
Error :extend-face-term-morph

We use it to define the composition operation for ⌜𝔽⌝
face_comp.
face_comp_wf

extend-face-term(I;phi;u) ==
  \/(λpr.let as,bs pr 
         in irr_face(I;as;bs) ∧ u(irr-face-morph(I;as;bs))"(face_lattice_components(I;phi)))



Definitions occuring in Statement :  cubical-term-at: u(a) irr-face-morph: irr-face-morph(I;as;bs) face_lattice_components: face_lattice_components(I;x) irr_face: irr_face(I;as;bs) face_lattice-deq: face_lattice-deq() face_lattice: face_lattice(I) names-deq: NamesDeq names: names(I) lattice-fset-join: \/(s) lattice-meet: a ∧ b fset-image: f"(s) deq-fset: deq-fset(eq) fset: fset(T) product-deq: product-deq(A;B;a;b) lambda: λx.A[x] spread: spread def
Definitions occuring in definition :  face_lattice_components: face_lattice_components(I;x) irr-face-morph: irr-face-morph(I;as;bs) cubical-term-at: u(a) irr_face: irr_face(I;as;bs) face_lattice: face_lattice(I) lattice-meet: a ∧ b spread: spread def lambda: λx.A[x] face_lattice-deq: face_lattice-deq() names-deq: NamesDeq deq-fset: deq-fset(eq) names: names(I) fset: fset(T) product-deq: product-deq(A;B;a;b) fset-image: f"(s) lattice-fset-join: \/(s)
FDL editor aliases :  extend-face-term

Latex:
extend-face-term(I;phi;u)  ==
    \mbackslash{}/(\mlambda{}pr.let  as,bs  =  pr 
                  in  irr\_face(I;as;bs)  \mwedge{}  u(irr-face-morph(I;as;bs))"(face\_lattice\_components(I;phi)))



Date html generated: 2017_02_21-AM-10_59_58
Last ObjectModification: 2017_02_07-PM-05_44_13

Theory : cubical!type!theory


Home Index