Nuprl Lemma : face-or-at
∀[r,s,I,rho:Top].  ((r ∨ s)(rho) ~ r(rho) ∨ s(rho))
Proof
Definitions occuring in Statement : 
face-or: (a ∨ b)
, 
cubical-term-at: u(a)
, 
face_lattice: face_lattice(I)
, 
lattice-join: a ∨ b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
cubical-term-at: u(a)
, 
face-or: (a ∨ b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[r,s,I,rho:Top].    ((r  \mvee{}  s)(rho)  \msim{}  r(rho)  \mvee{}  s(rho))
Date html generated:
2016_05_19-AM-08_25_37
Last ObjectModification:
2016_03_06-PM-01_24_11
Theory : cubical!type!theory
Home
Index