Nuprl Lemma : face-or-at

[r,s,I,rho:Top].  ((r ∨ s)(rho) r(rho) ∨ s(rho))


Proof




Definitions occuring in Statement :  face-or: (a ∨ b) cubical-term-at: u(a) face_lattice: face_lattice(I) lattice-join: a ∨ b uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  cubical-term-at: u(a) face-or: (a ∨ b) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom lemma_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[r,s,I,rho:Top].    ((r  \mvee{}  s)(rho)  \msim{}  r(rho)  \mvee{}  s(rho))



Date html generated: 2016_05_19-AM-08_25_37
Last ObjectModification: 2016_03_06-PM-01_24_11

Theory : cubical!type!theory


Home Index