Nuprl Lemma : face-term-iff_wf

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}].  (Gamma ⊢ (phi ⇐⇒ psi) ∈ ℙ{[i j']})


Proof




Definitions occuring in Statement :  face-term-iff: Gamma ⊢ (phi ⇐⇒ psi) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-term-iff: Gamma ⊢ (phi ⇐⇒ psi) prop: and: P ∧ Q
Lemmas referenced :  face-term-implies_wf cubical-term_wf face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    (Gamma  \mvdash{}  (phi  \mLeftarrow{}{}\mRightarrow{}  psi)  \mmember{}  \mBbbP{}\{[i  |  j']\})



Date html generated: 2020_05_20-PM-02_48_35
Last ObjectModification: 2020_04_04-PM-07_03_33

Theory : cubical!type!theory


Home Index