Nuprl Lemma : face-type-ap-morph-ps
∀[I,J,f,rho,u:Top].  ((u rho f) ~ (u)<f>)
Proof
Definitions occuring in Statement : 
face-type: 𝔽, 
fl-morph: <f>, 
presheaf-type-ap-morph: (u a f), 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
face-type: 𝔽, 
presheaf-type-ap-morph: (u a f), 
constant-cubical-type: (X), 
pi2: snd(t), 
face-presheaf: 𝔽, 
cube-set-restriction: f(s)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[I,J,f,rho,u:Top].    ((u  rho  f)  \msim{}  (u)<f>)
Date html generated:
2018_05_23-AM-09_19_38
Last ObjectModification:
2018_05_20-PM-06_18_00
Theory : cubical!type!theory
Home
Index