Nuprl Lemma : face-type-ap-morph-ps

[I,J,f,rho,u:Top].  ((u rho f) (u)<f>)


Proof




Definitions occuring in Statement :  face-type: 𝔽 fl-morph: <f> presheaf-type-ap-morph: (u f) uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-type: 𝔽 presheaf-type-ap-morph: (u f) constant-cubical-type: (X) pi2: snd(t) face-presheaf: 𝔽 cube-set-restriction: f(s)
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[I,J,f,rho,u:Top].    ((u  rho  f)  \msim{}  (u)<f>)



Date html generated: 2018_05_23-AM-09_19_38
Last ObjectModification: 2018_05_20-PM-06_18_00

Theory : cubical!type!theory


Home Index