Nuprl Lemma : face-type-at

[J,rho:Top].  (𝔽(rho) Point(face_lattice(J)))


Proof




Definitions occuring in Statement :  face-type: 𝔽 cubical-type-at: A(a) face_lattice: face_lattice(I) lattice-point: Point(l) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-type: 𝔽 cubical-type-at: A(a) face-presheaf: 𝔽 constant-cubical-type: (X) pi1: fst(t) all: x:A. B[x] top: Top
Lemmas referenced :  top_wf I_cube_pair_redex_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[J,rho:Top].    (\mBbbF{}(rho)  \msim{}  Point(face\_lattice(J)))



Date html generated: 2016_05_19-AM-08_24_28
Last ObjectModification: 2016_03_03-PM-03_29_10

Theory : cubical!type!theory


Home Index