Nuprl Lemma : face-type-at
∀[J,rho:Top].  (𝔽(rho) ~ Point(face_lattice(J)))
Proof
Definitions occuring in Statement : 
face-type: 𝔽, 
cubical-type-at: A(a), 
face_lattice: face_lattice(I), 
lattice-point: Point(l), 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
face-type: 𝔽, 
cubical-type-at: A(a), 
face-presheaf: 𝔽, 
constant-cubical-type: (X), 
pi1: fst(t), 
all: ∀x:A. B[x], 
top: Top
Lemmas referenced : 
top_wf, 
I_cube_pair_redex_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[J,rho:Top].    (\mBbbF{}(rho)  \msim{}  Point(face\_lattice(J)))
Date html generated:
2016_05_19-AM-08_24_28
Last ObjectModification:
2016_03_03-PM-03_29_10
Theory : cubical!type!theory
Home
Index