Nuprl Lemma : face-type-sq
𝔽 ~ <λI,alpha. Point(face_lattice(I)), λI,J,f,alpha,w. (w)<f>>
Proof
Definitions occuring in Statement : 
face-type: 𝔽, 
fl-morph: <f>, 
face_lattice: face_lattice(I), 
lattice-point: Point(l), 
apply: f a, 
lambda: λx.A[x], 
pair: <a, b>, 
sqequal: s ~ t
Definitions unfolded in proof : 
face-type: 𝔽, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
cube-set-restriction: f(s), 
pi2: snd(t), 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum
Lemmas referenced : 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity
Latex:
\mBbbF{}  \msim{}  <\mlambda{}I,alpha.  Point(face\_lattice(I)),  \mlambda{}I,J,f,alpha,w.  (w)<f>>
Date html generated:
2019_11_04-PM-05_37_07
Last ObjectModification:
2019_04_09-PM-03_09_59
Theory : cubical!type!theory
Home
Index