Nuprl Lemma : face_lattice-join-invariant
∀[v,y,I,J:Top].  (v ∨ y ~ v ∨ y)
Proof
Definitions occuring in Statement : 
face_lattice: face_lattice(I), 
lattice-join: a ∨ b, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
lattice-join: a ∨ b, 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
fset-constrained-ac-lub: lub(P;ac1;ac2), 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2), 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-union: x ⋃ y, 
l-union: as ⋃ bs, 
union-deq: union-deq(A;B;a;b), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality
Latex:
\mforall{}[v,y,I,J:Top].    (v  \mvee{}  y  \msim{}  v  \mvee{}  y)
Date html generated:
2017_02_21-AM-10_32_21
Last ObjectModification:
2017_02_03-PM-08_41_35
Theory : cubical!type!theory
Home
Index