Nuprl Lemma : fibrant-type-cumulativity
∀[X:j⊢]. (FibrantType(X) ⊆r fibrant-type{i':l}(X))
Proof
Definitions occuring in Statement : 
fibrant-type: FibrantType(X)
, 
cubical_set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
fibrant-type: FibrantType(X)
Lemmas referenced : 
cubical-type-cumulativity, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
fibrant-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairEquality_alt, 
cut, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
sqequalRule, 
universeIsType, 
instantiate
Latex:
\mforall{}[X:j\mvdash{}].  (FibrantType(X)  \msubseteq{}r  fibrant-type\{i':l\}(X))
Date html generated:
2020_05_20-PM-05_20_10
Last ObjectModification:
2020_04_12-AM-08_50_24
Theory : cubical!type!theory
Home
Index