Nuprl Lemma : fibrant-type-cumulativity

[X:j⊢]. (FibrantType(X) ⊆fibrant-type{i':l}(X))


Proof




Definitions occuring in Statement :  fibrant-type: FibrantType(X) cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T fibrant-type: FibrantType(X)
Lemmas referenced :  cubical-type-cumulativity composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 fibrant-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt sqequalHypSubstitution productElimination thin dependent_pairEquality_alt cut hypothesisEquality applyEquality introduction extract_by_obid isectElimination hypothesis sqequalRule universeIsType instantiate

Latex:
\mforall{}[X:j\mvdash{}].  (FibrantType(X)  \msubseteq{}r  fibrant-type\{i':l\}(X))



Date html generated: 2020_05_20-PM-05_20_10
Last ObjectModification: 2020_04_12-AM-08_50_24

Theory : cubical!type!theory


Home Index