Nuprl Definition : fillterm
fillterm(Gamma;A;I;i;j;rho;a0;u) ==  λK,f. if isdM0(f i) then (a0 (i0)(rho) s ⋅ f) else u(m(i;j) ⋅ f) fi 
Definitions occuring in Statement : 
cubical-term-at: u(a), 
cubical-type-ap-morph: (u a f), 
cube-set-restriction: f(s), 
nc-m: m(i;j), 
nc-0: (i0), 
nc-s: s, 
add-name: I+i, 
nh-comp: g ⋅ f, 
isdM0: isdM0(x), 
ifthenelse: if b then t else f fi , 
apply: f a, 
lambda: λx.A[x]
Definitions occuring in definition : 
lambda: λx.A[x], 
ifthenelse: if b then t else f fi , 
isdM0: isdM0(x), 
apply: f a, 
cubical-type-ap-morph: (u a f), 
nc-s: s, 
cube-set-restriction: f(s), 
nc-0: (i0), 
cubical-term-at: u(a), 
nh-comp: g ⋅ f, 
add-name: I+i, 
nc-m: m(i;j)
FDL editor aliases : 
fillterm
Latex:
fillterm(Gamma;A;I;i;j;rho;a0;u)  ==
    \mlambda{}K,f.  if  isdM0(f  i)  then  (a0  (i0)(rho)  s  \mcdot{}  f)  else  u(m(i;j)  \mcdot{}  f)  fi 
Date html generated:
2016_05_19-AM-09_25_50
Last ObjectModification:
2015_11_08-PM-08_21_58
Theory : cubical!type!theory
Home
Index