Nuprl Definition : fillterm

fillterm(Gamma;A;I;i;j;rho;a0;u) ==  λK,f. if isdM0(f i) then (a0 (i0)(rho) s ⋅ f) else u(m(i;j) ⋅ f) fi 



Definitions occuring in Statement :  cubical-term-at: u(a) cubical-type-ap-morph: (u f) cube-set-restriction: f(s) nc-m: m(i;j) nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f isdM0: isdM0(x) ifthenelse: if then else fi  apply: a lambda: λx.A[x]
Definitions occuring in definition :  lambda: λx.A[x] ifthenelse: if then else fi  isdM0: isdM0(x) apply: a cubical-type-ap-morph: (u f) nc-s: s cube-set-restriction: f(s) nc-0: (i0) cubical-term-at: u(a) nh-comp: g ⋅ f add-name: I+i nc-m: m(i;j)
FDL editor aliases :  fillterm

Latex:
fillterm(Gamma;A;I;i;j;rho;a0;u)  ==
    \mlambda{}K,f.  if  isdM0(f  i)  then  (a0  (i0)(rho)  s  \mcdot{}  f)  else  u(m(i;j)  \mcdot{}  f)  fi 



Date html generated: 2016_05_19-AM-09_25_50
Last ObjectModification: 2015_11_08-PM-08_21_58

Theory : cubical!type!theory


Home Index