Nuprl Lemma : fl_all-0
∀I,J,i:Top.  ((∀i.0) ~ 0)
Proof
Definitions occuring in Statement : 
fl_all: (∀i.phi), 
face_lattice: face_lattice(I), 
lattice-0: 0, 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
fl_all: (∀i.phi), 
fl-all-hom: fl-all-hom(I;i), 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
lattice-0: 0, 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
member: t ∈ T
Lemmas referenced : 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
hypothesis, 
lemma_by_obid
Latex:
\mforall{}I,J,i:Top.    ((\mforall{}i.0)  \msim{}  0)
Date html generated:
2016_05_18-PM-00_17_54
Last ObjectModification:
2016_03_25-PM-04_04_34
Theory : cubical!type!theory
Home
Index