Nuprl Lemma : interval-type-at
∀[J,rho:Top].  (𝕀(rho) ~ 𝕀(J))
Proof
Definitions occuring in Statement : 
interval-type: 𝕀
, 
cubical-type-at: A(a)
, 
interval-presheaf: 𝕀
, 
I_cube: A(I)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
interval-type: 𝕀
, 
top: Top
Lemmas referenced : 
top_wf, 
constant-cubical-type-at
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[J,rho:Top].    (\mBbbI{}(rho)  \msim{}  \mBbbI{}(J))
Date html generated:
2016_05_18-PM-01_59_56
Last ObjectModification:
2016_03_03-PM-02_29_15
Theory : cubical!type!theory
Home
Index