Nuprl Lemma : partial-term-0-subset
∀[H,xx,u:Top].  (partial-term-0(H, xx;u) ~ partial-term-0(H;u))
Proof
Definitions occuring in Statement : 
partial-term-0: u[0]
, 
context-subset: Gamma, phi
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
csm-id: 1(X)
, 
csm-id-adjoin: [u]
, 
partial-term-0: u[0]
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
sqequalAxiom, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[H,xx,u:Top].    (partial-term-0(H,  xx;u)  \msim{}  partial-term-0(H;u))
Date html generated:
2016_05_19-AM-08_40_17
Last ObjectModification:
2016_04_13-AM-11_12_36
Theory : cubical!type!theory
Home
Index