Nuprl Lemma : path-eta_wf
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[pth:{G ⊢ _:Path(A)}].  (path-eta(pth) ∈ {G.𝕀 ⊢ _:(A)p})
Proof
Definitions occuring in Statement : 
path-eta: path-eta(pth)
, 
pathtype: Path(A)
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
path-eta: path-eta(pth)
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
true: True
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
Lemmas referenced : 
cubicalpath-app_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-ap-term_wf, 
pathtype_wf, 
cubical-term_wf, 
csm-pathtype, 
cubical-type-cumulativity2, 
cc-snd_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
lambdaEquality_alt, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
universeIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[pth:\{G  \mvdash{}  \_:Path(A)\}].    (path-eta(pth)  \mmember{}  \{G.\mBbbI{}  \mvdash{}  \_:(A)p\})
Date html generated:
2020_05_20-PM-03_16_19
Last ObjectModification:
2020_04_06-PM-05_37_55
Theory : cubical!type!theory
Home
Index