Nuprl Lemma : path-trans-sq2

[G,pth,I,a,J,h,u:Top].
  (PathTransport(pth) (snd((pth(s(h(a))) J+new-name(J) 1 <new-name(J)>))) new-name(J) discr(⋅u)


Proof




Definitions occuring in Statement :  path-trans: PathTransport(p) discrete-cubical-term: discr(t) cubical-term-at: u(a) face_lattice: face_lattice(I) cube-set-restriction: f(s) nc-s: s new-name: new-name(I) add-name: I+i nh-id: 1 dM_inc: <x> it: uall: [x:A]. B[x] top: Top pi2: snd(t) apply: a sqequal: t lattice-0: 0
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term-at: u(a) path-eta: path-eta(pth) universe-comp-op: compOp(t) cc-snd: q cc-fst: p cubicalpath-app: pth r cubical-app: app(w; u) pi2: snd(t) csm-ap-term: (t)s csm-ap: (s)x pi1: fst(t)
Lemmas referenced :  path-trans-sq istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache inhabitedIsType

Latex:
\mforall{}[G,pth,I,a,J,h,u:Top].
    (PathTransport(pth)  I  a  J  h  u  \msim{}  (snd((pth(s(h(a)))  J+new-name(J)  1  <new-name(J)>)))  J  new-name(J) 
                                                                    1 
                                                                    0 
                                                                    discr(\mcdot{}) 
                                                                    u)



Date html generated: 2020_05_20-PM-07_33_03
Last ObjectModification: 2020_04_25-PM-10_33_42

Theory : cubical!type!theory


Home Index