Nuprl Lemma : path_term-0
∀[H,A,psi,r,a,b,w:Top].
  ((path_term(psi; w; a; b; r))[0(𝕀)] ~ path-term((psi)1(H.A);(w)[0(𝕀)];(a)[0(𝕀)];(b)[0(𝕀)];(r)1(H.A)))
Proof
Definitions occuring in Statement : 
path_term: path_term(phi; w; a; b; r)
, 
path-term: path-term(phi;w;a;b;r)
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
csm-id: 1(X)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
all: ∀x:A. B[x]
Lemmas referenced : 
csm-path_term, 
csm_id_adjoin_fst_term_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}[H,A,psi,r,a,b,w:Top].
    ((path\_term(psi;  w;  a;  b;  r))[0(\mBbbI{})] 
    \msim{}  path-term((psi)1(H.A);(w)[0(\mBbbI{})];(a)[0(\mBbbI{})];(b)[0(\mBbbI{})];(r)1(H.A)))
Date html generated:
2018_05_23-AM-11_00_49
Last ObjectModification:
2018_05_20-PM-08_04_35
Theory : cubical!type!theory
Home
Index