Nuprl Definition : pi_comp

pi_comp(X;A;cA;cB) ==
  λH,sigma,phi,u,a0. let revfill(H.((A)sigma)[1(𝕀)];((cA)sigma)p+;q) in
                         comp (cB)(sigma p+;v) [(phi)p ⟶ app((u)p+; v)] app((a0)p; (v)[0(𝕀)]))



Definitions occuring in Statement :  revfill: revfill(Gamma;cA;a1) comp_term: comp cA [phi ⟶ u] a0 csm-comp-structure: (cA)tau interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) cubical-lambda: b) csm+: tau+ csm-id-adjoin: [u] csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s csm-ap-type: (AF)s csm-comp: F let: let lambda: λx.A[x]
Definitions occuring in definition :  interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s cc-fst: p cubical-app: app(w; u) interval-type: 𝕀 csm-ap-type: (AF)s interval-1: 1(𝕀) cube-context-adjoin: X.A csm+: tau+ csm-comp: F csm-adjoin: (s;u) csm-comp-structure: (cA)tau comp_term: comp cA [phi ⟶ u] a0 cubical-lambda: b) cc-snd: q revfill: revfill(Gamma;cA;a1) let: let lambda: λx.A[x]
FDL editor aliases :  pi_comp

Latex:
pi\_comp(X;A;cA;cB)  ==
    \mlambda{}H,sigma,phi,u,a0.  let  v  =  revfill(H.((A)sigma)[1(\mBbbI{})];((cA)sigma)p+;q)  in
                                                  (\mlambda{}comp  (cB)(sigma  o  p+;v)  [(phi)p  \mvdash{}\mrightarrow{}  app((u)p+;  v)]  app((a0)p;  (v)[0(\mBbbI{})]))



Date html generated: 2017_01_10-AM-09_55_04
Last ObjectModification: 2016_12_21-PM-06_27_11

Theory : cubical!type!theory


Home Index