Nuprl Lemma : sigma-elim-csm_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. (SigmaElim ∈ X.Σ A B ij⟶ X.A.B)
Proof
Definitions occuring in Statement :
sigma-elim-csm: SigmaElim
,
cubical-sigma: Σ A B
,
cube-context-adjoin: X.A
,
cubical-type: {X ⊢ _}
,
cube_set_map: A ⟶ B
,
cubical_set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cubical_set: CubicalSet
,
cube-context-adjoin: X.A
,
psc-adjoin: X.A
,
I_cube: A(I)
,
I_set: A(I)
,
cubical-type-at: A(a)
,
presheaf-type-at: A(a)
,
cube-set-restriction: f(s)
,
psc-restriction: f(s)
,
cubical-type-ap-morph: (u a f)
,
presheaf-type-ap-morph: (u a f)
,
cube_set_map: A ⟶ B
,
cubical-sigma: Σ A B
,
presheaf-sigma: Σ A B
,
cc-adjoin-cube: (v;u)
,
psc-adjoin-set: (v;u)
,
sigma-elim-csm: SigmaElim
,
sigma-elim-pscm: SigmaElim
Lemmas referenced :
sigma-elim-pscm_wf,
cube-cat_wf,
cubical-type-sq-presheaf-type
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
sqequalRule,
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}]. \mforall{}[A:\{X \mvdash{} \_\}]. \mforall{}[B:\{X.A \mvdash{} \_\}]. (SigmaElim \mmember{} X.\mSigma{} A B ij{}\mrightarrow{} X.A.B)
Date html generated:
2020_05_20-PM-02_27_45
Last ObjectModification:
2020_04_04-AM-09_29_29
Theory : cubical!type!theory
Home
Index