Nuprl Lemma : term-p+0
∀[X,Y,Z,W,t,A:Top].  (((t)p+)[0(𝕀)] ~ ((t)[0(𝕀)])p)
Proof
Definitions occuring in Statement : 
interval-0: 0(𝕀)
, 
csm+: tau+
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-term: (t)s
, 
cc-fst: p
, 
csm+: tau+
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
pi2: snd(t)
, 
compose: f o g
, 
pi1: fst(t)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[X,Y,Z,W,t,A:Top].    (((t)p+)[0(\mBbbI{})]  \msim{}  ((t)[0(\mBbbI{})])p)
Date html generated:
2018_05_23-AM-09_29_48
Last ObjectModification:
2018_05_20-PM-06_28_33
Theory : cubical!type!theory
Home
Index