Nuprl Lemma : term-p+1
∀[X,Y,Z,W,t,A:Top].  (((t)p+)[1(𝕀)] ~ ((t)[1(𝕀)])p)
Proof
Definitions occuring in Statement : 
interval-1: 1(𝕀), 
csm+: tau+, 
csm-id-adjoin: [u], 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
interval-1: 1(𝕀), 
csm-id-adjoin: [u], 
csm-ap-term: (t)s, 
cc-fst: p, 
csm+: tau+, 
csm-ap: (s)x, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
cc-snd: q, 
csm-ap-type: (AF)s, 
csm-comp: G o F, 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[X,Y,Z,W,t,A:Top].    (((t)p+)[1(\mBbbI{})]  \msim{}  ((t)[1(\mBbbI{})])p)
Date html generated:
2018_05_23-AM-09_29_58
Last ObjectModification:
2018_05_20-PM-06_28_53
Theory : cubical!type!theory
Home
Index