Nuprl Lemma : thin-context-subset
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[t:{Gamma ⊢ _}].  Gamma, phi ⊢ t
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
context-subset-subtype-simple, 
cubical-type_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
instantiate
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[t:\{Gamma  \mvdash{}  \_\}].    Gamma,  phi  \mvdash{}  t
Date html generated:
2020_05_20-PM-02_54_50
Last ObjectModification:
2020_04_06-AM-10_31_23
Theory : cubical!type!theory
Home
Index