Nuprl Lemma : thin-context-subset

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[t:{Gamma ⊢ _}].  Gamma, phi ⊢ t


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  context-subset-subtype-simple cubical-type_wf cubical-term_wf face-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType instantiate

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[t:\{Gamma  \mvdash{}  \_\}].    Gamma,  phi  \mvdash{}  t



Date html generated: 2020_05_20-PM-02_54_50
Last ObjectModification: 2020_04_06-AM-10_31_23

Theory : cubical!type!theory


Home Index