Nuprl Lemma : transEquivbeta-type_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  G ⊢ transEquivbeta-type{i:l}(G;A;B)


Proof




Definitions occuring in Statement :  transEquivbeta-type: transEquivbeta-type{i:l}(G;A;B) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uabetatype: uabetatype(G;A;B;f) transEquivbeta-type: transEquivbeta-type{i:l}(G;A;B) transport-type: TransportType(A)
Lemmas referenced :  uabetatype_wf istype-cubical-universe-term cubical_set_wf cubical-term_wf path-type_wf cubical-universe_wf transEquiv-trans_wf istype-cubical-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis lambdaEquality_alt rename instantiate dependent_functionElimination universeIsType sqequalRule equalityTransitivity equalitySymmetry isect_memberEquality_alt inhabitedIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    G  \mvdash{}  transEquivbeta-type\{i:l\}(G;A;B)



Date html generated: 2020_05_20-PM-07_44_37
Last ObjectModification: 2020_05_01-PM-02_23_34

Theory : cubical!type!theory


Home Index