Nuprl Lemma : transEquivbeta-type_wf
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  G ⊢ transEquivbeta-type{i:l}(G;A;B)
Proof
Definitions occuring in Statement : 
transEquivbeta-type: transEquivbeta-type{i:l}(G;A;B)
, 
cubical-universe: c𝕌
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uabetatype: uabetatype(G;A;B;f)
, 
transEquivbeta-type: transEquivbeta-type{i:l}(G;A;B)
, 
transport-type: TransportType(A)
Lemmas referenced : 
uabetatype_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
cubical-term_wf, 
path-type_wf, 
cubical-universe_wf, 
transEquiv-trans_wf, 
istype-cubical-term
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
rename, 
instantiate, 
dependent_functionElimination, 
universeIsType, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
inhabitedIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    G  \mvdash{}  transEquivbeta-type\{i:l\}(G;A;B)
Date html generated:
2020_05_20-PM-07_44_37
Last ObjectModification:
2020_05_01-PM-02_23_34
Theory : cubical!type!theory
Home
Index