Nuprl Lemma : typed-cc-snd_wf
∀G:j⊢. ∀A:{G ⊢ _}.  (tq ∈ {G.A ⊢ _:(A)tp{i:l}})
Proof
Definitions occuring in Statement : 
typed-cc-snd: tq, 
typed-cc-fst: tp{i:l}, 
cube-context-adjoin: X.A, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
all: ∀x:A. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
csm-ap-type: (AF)s, 
pscm-ap-type: (AF)s, 
csm-ap: (s)x, 
pscm-ap: (s)x, 
typed-cc-fst: tp{i:l}, 
typed-psc-fst: tp{i:l}, 
cc-fst: p, 
psc-fst: p, 
cube-context-adjoin: X.A, 
psc-adjoin: X.A, 
I_cube: A(I), 
I_set: A(I), 
cubical-type-at: A(a), 
presheaf-type-at: A(a), 
cube-set-restriction: f(s), 
psc-restriction: f(s), 
cubical-type-ap-morph: (u a f), 
presheaf-type-ap-morph: (u a f), 
typed-cc-snd: tq, 
typed-psc-snd: tq, 
cc-snd: q, 
psc-snd: q
Lemmas referenced : 
typed-psc-snd_wf, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
Error :memTop
Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.    (tq  \mmember{}  \{G.A  \mvdash{}  \_:(A)tp\{i:l\}\})
Date html generated:
2020_05_20-PM-01_55_28
Last ObjectModification:
2020_04_03-PM-08_29_54
Theory : cubical!type!theory
Home
Index