Nuprl Definition : uniform-comp-function

uniform-comp-function{j:l, i:l}(Gamma; A; comp) ==
  ∀H,K:j⊢. ∀tau:K j⟶ H. ∀sigma:H.𝕀 j⟶ Gamma. ∀phi:{H ⊢ _:𝔽}. ∀u:{H, phi.𝕀 ⊢ _:(A)sigma}.
  ∀a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}.
    ((comp sigma phi a0)tau
    (comp sigma tau+ (phi)tau (u)tau+ (a0)tau)
    ∈ {K ⊢ _:(((A)sigma)[1(𝕀)])tau[(phi)tau |⟶ ((u)[1(𝕀)])tau]})



Definitions occuring in Statement :  constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] apply: a equal: t ∈ T
Definitions occuring in definition :  cubical_set: CubicalSet cube_set_map: A ⟶ B face-type: 𝔽 cubical-term: {X ⊢ _:A} all: x:A. B[x] interval-0: 0(𝕀) equal: t ∈ T constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm-ap-type: (AF)s csm-id-adjoin: [u] context-subset: Gamma, phi interval-1: 1(𝕀) apply: a csm-comp: F cube-context-adjoin: X.A csm+: tau+ interval-type: 𝕀 csm-ap-term: (t)s

Latex:
uniform-comp-function\{j:l,  i:l\}(Gamma;  A;  comp)  ==
    \mforall{}H,K:j\mvdash{}.  \mforall{}tau:K  j{}\mrightarrow{}  H.  \mforall{}sigma:H.\mBbbI{}  j{}\mrightarrow{}  Gamma.  \mforall{}phi:\{H  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}u:\{H,  phi.\mBbbI{}  \mvdash{}  \_:(A)sigma\}.
    \mforall{}a0:\{H  \mvdash{}  \_:((A)sigma)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}.
        ((comp  H  sigma  phi  u  a0)tau  =  (comp  K  sigma  o  tau+  (phi)tau  (u)tau+  (a0)tau))



Date html generated: 2020_05_20-PM-04_21_19
Last ObjectModification: 2020_04_11-PM-04_54_35

Theory : cubical!type!theory


Home Index