Nuprl Definition : uniform-filling-function

uniform-filling-function{j:l, i:l}(Gamma;A;fill) ==
  ∀H,K:j⊢. ∀tau:K j⟶ H. ∀sigma:H.𝕀 j⟶ Gamma. ∀phi:{H ⊢ _:𝔽}. ∀u:{H.𝕀(phi)p ⊢ _:(A)sigma}.
  ∀a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ u[0]]}.
    ((fill sigma phi a0)tau+ (fill sigma tau+ (phi)tau (u)tau+ (a0)tau) ∈ {K.𝕀 ⊢ _:((A)sigma)tau+})



Definitions occuring in Statement :  partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] apply: a equal: t ∈ T
Definitions occuring in definition :  cubical_set: CubicalSet cube_set_map: A ⟶ B face-type: 𝔽 context-subset: Gamma, phi cc-fst: p all: x:A. B[x] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm-id-adjoin: [u] interval-0: 0(𝕀) partial-term-0: u[0] equal: t ∈ T cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s apply: a csm-comp: F cube-context-adjoin: X.A csm+: tau+ interval-type: 𝕀 csm-ap-term: (t)s
FDL editor aliases :  uniform-filling-function

Latex:
uniform-filling-function\{j:l,  i:l\}(Gamma;A;fill)  ==
    \mforall{}H,K:j\mvdash{}.  \mforall{}tau:K  j{}\mrightarrow{}  H.  \mforall{}sigma:H.\mBbbI{}  j{}\mrightarrow{}  Gamma.  \mforall{}phi:\{H  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}u:\{H.\mBbbI{},  (phi)p  \mvdash{}  \_:(A)sigma\}.
    \mforall{}a0:\{H  \mvdash{}  \_:((A)sigma)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}.
        ((fill  H  sigma  phi  u  a0)tau+  =  (fill  K  sigma  o  tau+  (phi)tau  (u)tau+  (a0)tau))



Date html generated: 2020_05_20-PM-04_40_48
Last ObjectModification: 2020_04_11-AM-10_53_04

Theory : cubical!type!theory


Home Index