Nuprl Definition : univalence_t

univalence_t{i:l}(G) ==
  bij-contr(G.c𝕌; Σ c𝕌 Equiv(decode((q)p);decode(q)); cubical-sigma-fun(G.c𝕌;c𝕌;Equiv(decode((q)p);decode(q));UA);
  cubical-sigma-fun(G.c𝕌;c𝕌;(Path_c𝕌 (q)p q);44); 55; 66; singleton-contr(G.c𝕌;c𝕌;q)))



Definitions occuring in Statement :  univ-a: UA universe-decode: decode(t) cubical-universe: c𝕌 bij-contr: bij-contr(X; A; f; g; cA; b; c) singleton-contr: singleton-contr(X;A;a) cubical-equiv: Equiv(T;A) path-type: (Path_A b) cubical-sigma-fun: cubical-sigma-fun(G;A;B;f) cubical-sigma: Σ B cubical-lambda: b) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s natural_number: $n
Definitions occuring in definition :  cubical-lambda: b) bij-contr: bij-contr(X; A; f; g; cA; b; c) cubical-sigma: Σ B cubical-equiv: Equiv(T;A) universe-decode: decode(t) univ-a: UA cubical-sigma-fun: cubical-sigma-fun(G;A;B;f) path-type: (Path_A b) csm-ap-term: (t)s cc-fst: p natural_number: $n singleton-contr: singleton-contr(X;A;a) cube-context-adjoin: X.A cubical-universe: c𝕌 cc-snd: q
FDL editor aliases :  univalence_t

Latex:
univalence\_t\{i:l\}(G)  ==
    (\mlambda{}bij-contr(G.c\mBbbU{};  \mSigma{}  c\mBbbU{}  Equiv(decode((q)p);decode(q));
    cubical-sigma-fun(G.c\mBbbU{};c\mBbbU{};Equiv(decode((q)p);decode(q));UA);
    cubical-sigma-fun(G.c\mBbbU{};c\mBbbU{};(Path\_c\mBbbU{}  (q)p  q);44);  55;  66;  singleton-contr(G.c\mBbbU{};c\mBbbU{};q)))



Date html generated: 2018_05_23-PM-06_26_31
Last ObjectModification: 2017_11_20-AM-10_20_23

Theory : cubical!type!theory


Home Index