Nuprl Lemma : basic-axioms-imply_between1
∀e:EuclideanPlaneStructure. (BasicGeometryAxioms(e) ⇒ (∀a1,a2,b,c:Point.  (a1 ≡ a2 ⇒ B(a1bc) ⇒ B(a2bc))))
Proof
Definitions occuring in Statement : 
euclidean-plane-structure: EuclideanPlaneStructure, 
basic-geo-axioms: BasicGeometryAxioms(g), 
geo-eq: a ≡ b, 
geo-between: B(abc), 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
basic-geo-axioms: BasicGeometryAxioms(g), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
geo-between: B(abc), 
cand: A c∧ B, 
not: ¬A, 
geo-lsep: a # bc, 
or: P ∨ Q, 
false: False, 
guard: {T}, 
geo-sep: a # b, 
geo-eq: a ≡ b, 
geo-ge: ab ≥ cd, 
geo-congruent: ab ≅ cd, 
geo-length-sep: ab # cd)
Latex:
\mforall{}e:EuclideanPlaneStructure
    (BasicGeometryAxioms(e)  {}\mRightarrow{}  (\mforall{}a1,a2,b,c:Point.    (a1  \mequiv{}  a2  {}\mRightarrow{}  B(a1bc)  {}\mRightarrow{}  B(a2bc))))
Date html generated:
2020_05_20-AM-09_43_13
Last ObjectModification:
2020_01_27-PM-10_46_12
Theory : euclidean!plane!geometry
Home
Index