Nuprl Lemma : basic-geo-not-left-and-right
∀g:EuclideanPlaneStructure. (BasicGeometryAxioms(g) ⇒ (∀a,b,c:Point.  (a leftof bc ⇒ (¬a leftof cb))))
Proof
Definitions occuring in Statement : 
euclidean-plane-structure: EuclideanPlaneStructure, 
basic-geo-axioms: BasicGeometryAxioms(g), 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
geo-eq: a ≡ b, 
basic-geo-axioms: BasicGeometryAxioms(g), 
cand: A c∧ B, 
geo-ge: ab ≥ cd, 
guard: {T}, 
geo-colinear: Colinear(a;b;c), 
geo-lsep: a # bc, 
or: P ∨ Q
Latex:
\mforall{}g:EuclideanPlaneStructure
    (BasicGeometryAxioms(g)  {}\mRightarrow{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  (\mneg{}a  leftof  cb))))
Date html generated:
2020_05_20-AM-09_42_50
Last ObjectModification:
2020_01_13-PM-02_50_27
Theory : euclidean!plane!geometry
Home
Index