Nuprl Lemma : geo-SCO_wf
∀[g:EuclideanPlaneStructure]
  ∀c,d,a:Point. ∀b:{b:Point| b ≠ a ∧ c_b_d} .  (SCO(a;b;c;d) ∈ {u:Point| cu ≅ cd ∧ a_b_u ∧ (b ≠ d ⇒ b ≠ u)} )
Proof
Definitions occuring in Statement : 
geo-SCO: SCO(a;b;c;d), 
euclidean-plane-structure: EuclideanPlaneStructure, 
geo-congruent: ab ≅ cd, 
geo-between: a_b_c, 
geo-sep: a ≠ b, 
geo-point: Point, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
geo-SCO: SCO(a;b;c;d), 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
geo-SC_wf, 
geo-sep_wf, 
geo-between_wf, 
set_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
setElimination, 
thin, 
rename, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
hypothesis, 
productEquality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality
Latex:
\mforall{}[g:EuclideanPlaneStructure]
    \mforall{}c,d,a:Point.  \mforall{}b:\{b:Point|  b  \mneq{}  a  \mwedge{}  c\_b\_d\}  .
        (SCO(a;b;c;d)  \mmember{}  \{u:Point|  cu  \mcong{}  cd  \mwedge{}  a\_b\_u  \mwedge{}  (b  \mneq{}  d  {}\mRightarrow{}  b  \mneq{}  u)\}  )
Date html generated:
2018_05_22-AM-11_52_46
Last ObjectModification:
2018_03_30-PM-04_36_52
Theory : euclidean!plane!geometry
Home
Index