Nuprl Lemma : geo-gt-prim-irrefl
∀g:EuclideanPlaneStructure. (BasicGeometryAxioms(g) ⇒ (∀a,b,c,d:Point.  (ab>cd ⇒ (¬cd>ab))))
Proof
Definitions occuring in Statement : 
euclidean-plane-structure: EuclideanPlaneStructure, 
basic-geo-axioms: BasicGeometryAxioms(g), 
geo-gt-prim: ab>cd, 
geo-point: Point, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
guard: {T}, 
basic-geo-axioms: BasicGeometryAxioms(g), 
and: P ∧ Q, 
geo-ge: ab ≥ cd
Latex:
\mforall{}g:EuclideanPlaneStructure.  (BasicGeometryAxioms(g)  {}\mRightarrow{}  (\mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  (\mneg{}cd>ab))))
 Date html generated: 
2020_05_20-AM-09_42_46
 Last ObjectModification: 
2020_01_24-PM-03_34_48
Theory : euclidean!plane!geometry
Home
Index