Nuprl Lemma : pgeo-dual_wf2
∀[pg:BasicProjectivePlane]. (pg* ∈ BasicProjectivePlane)
Proof
Definitions occuring in Statement : 
basic-projective-plane: BasicProjectivePlane, 
pgeo-dual: pg*, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
basic-projective-plane: BasicProjectivePlane, 
basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
pgeo-dual: pg*, 
pgeo-incident: a I b, 
pgeo-dual-prim: pg*, 
mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3), 
pgeo-plsep: pgeo-plsep(p; a; b), 
top: Top, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
pgeo-point: Point, 
pgeo-line: Line, 
mk-pgeo-prim: mk-pgeo-prim, 
btrue: tt, 
pgeo-leq: a ≡ b, 
pgeo-peq: a ≡ b, 
pgeo-lsep: l ≠ m, 
pgeo-psep: a ≠ b, 
and: P ∧ Q, 
cand: A c∧ B, 
prop: ℙ, 
subtype_rel: A ⊆r B
Lemmas referenced : 
pgeo-dual_wf, 
rec_select_update_lemma, 
not_wf, 
pgeo-leq_wf, 
pgeo-peq_wf, 
pgeo-incident_wf, 
pgeo-line_wf, 
pgeo-point_wf, 
basic-pgeo-axioms_wf, 
projective-plane-structure_subtype, 
basic-projective-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
productEquality, 
applyEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[pg:BasicProjectivePlane].  (pg*  \mmember{}  BasicProjectivePlane)
Date html generated:
2019_10_16-PM-02_12_22
Last ObjectModification:
2018_08_02-PM-01_22_03
Theory : euclidean!plane!geometry
Home
Index