Nuprl Lemma : sq_stable__geo-left-1
∀g:EuclideanPlaneStructure
  (BasicGeometryAxioms(g) ⇒ (∀a,b,c:Point.  (a # bc ⇒ (¬Colinear(a;b;c)))) ⇒ (∀a,b,c:Point.  SqStable(a leftof bc)))
Proof
Definitions occuring in Statement : 
euclidean-plane-structure: EuclideanPlaneStructure, 
basic-geo-axioms: BasicGeometryAxioms(g), 
geo-colinear: Colinear(a;b;c), 
geo-lsep: a # bc, 
geo-left: a leftof bc, 
geo-point: Point, 
sq_stable: SqStable(P), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
sq_stable: SqStable(P), 
squash: ↓T, 
geo-lsep: a # bc, 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
and: P ∧ Q, 
false: False, 
not: ¬A, 
exists: ∃x:A. B[x], 
geo-eq: a ≡ b, 
geo-between: B(abc), 
geo-sep: a # b, 
basic-geo-axioms: BasicGeometryAxioms(g), 
cand: A c∧ B, 
geo-colinear: Colinear(a;b;c), 
guard: {T}
Latex:
\mforall{}g:EuclideanPlaneStructure
    (BasicGeometryAxioms(g)
    {}\mRightarrow{}  (\mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mneg{}Colinear(a;b;c))))
    {}\mRightarrow{}  (\mforall{}a,b,c:Point.    SqStable(a  leftof  bc)))
Date html generated:
2020_05_20-AM-09_44_00
Last ObjectModification:
2020_01_27-PM-02_51_12
Theory : euclidean!plane!geometry
Home
Index