Nuprl Lemma : sq_stable__pgeo-plsep
∀p:ProjectivePlaneStructure. ∀a:Point. ∀b:Line.  SqStable(pgeo-plsep(p; a; b))
Proof
Definitions occuring in Statement : 
projective-plane-structure: ProjectivePlaneStructure, 
pgeo-plsep: pgeo-plsep(p; a; b), 
pgeo-line: Line, 
pgeo-point: Point, 
sq_stable: SqStable(P), 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
projective-plane-structure: ProjectivePlaneStructure, 
record+: record+, 
member: t ∈ T, 
record-select: r.x, 
subtype_rel: A ⊆r B, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
or: P ∨ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
and: P ∧ Q
Latex:
\mforall{}p:ProjectivePlaneStructure.  \mforall{}a:Point.  \mforall{}b:Line.    SqStable(pgeo-plsep(p;  a;  b))
Date html generated:
2020_05_20-AM-10_36_26
Last ObjectModification:
2019_12_03-AM-09_50_06
Theory : euclidean!plane!geometry
Home
Index