Nuprl Lemma : upper-dimension-axiom
∀g:EuclideanPlane. ∀a,b,c,x,y:Point.  (ax ≅ ay ⇒ bx ≅ by ⇒ cx ≅ cy ⇒ x # y ⇒ Colinear(a;b;c))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-colinear: Colinear(a;b;c), 
geo-congruent: ab ≅ cd, 
geo-sep: a # b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
geo-colinear: Colinear(a;b;c), 
cand: A c∧ B, 
and: P ∧ Q, 
basic-geo-axioms: BasicGeometryAxioms(g), 
squash: ↓T, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
all: ∀x:A. B[x]
Lemmas referenced : 
euclidean-plane_wf, 
sq_stable__geo-axioms
Rules used in proof : 
universeIsType, 
productElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y:Point.    (ax  \mcong{}  ay  {}\mRightarrow{}  bx  \mcong{}  by  {}\mRightarrow{}  cx  \mcong{}  cy  {}\mRightarrow{}  x  \#  y  {}\mRightarrow{}  Colinear(a;b;c))
Date html generated:
2019_10_30-AM-06_18_22
Last ObjectModification:
2019_10_29-PM-02_56_42
Theory : euclidean!plane!geometry
Home
Index